Лекция п+1.
Пусть X — схема (отделения, конечного типа)
A_X — малая DG-категория, т.е. $[A_X] \cong D^{perf}(X)$
$D(A_X) \cong D(X)$

Теорема (Луцк, Орлов)
Пусть на X достаточно много локально свободных пучков (то есть $\forall \mathcal{F} \in \mathcal{X} \exists \mathcal{F}$ лок.св., $\mathcal{F} \rightarrow \mathcal{O} \rightarrow 0$),
A и B — два оснащения.
Тогда $\exists F: A \rightarrow B$ — квазизэвенильность, т.е.

1. $F: \text{Hom}_A(a_1, a_2) \rightarrow \text{Hom}_B(f a_1, f a_2)$ — квазизоморфизм
2. $[F]: [A] \rightarrow [B]$ существенно индективен

(В частности, $[F]: [A] \cong [B]$,
$\text{Ind}_F: D(A) \rightarrow D(B)$)

Это всётаки, например, для квазизэвенильных многообразий
Это доказывает единственность оснащения.

По каждой схеме X мы можем построить A_X.

Из хороших схем мы попадаем в $\mathcal{DGcat}[\mathcal{Qeq}^{-1}]$ —
DG-категории с точностью до квазизэвенильности.
Объекты $D_{\text{cat}}[\text{per}]$ мы будем называть некоторыми названием схемами. Соответственно, там можно определить многое, но возникает из геометрической интуиции.

Теорема. $\text{Hom}_{D_{\text{cat}}[\text{per}]}(\mathcal{A}, \mathcal{B}) = T(\mathcal{A}, \mathcal{B}) \in D(\mathcal{A} \otimes \mathcal{B})$

Геометрические аналогии квазифункторов здесь являются функторы Фурай-линка.

Для объекта $\mathcal{X}_0 \in D(X \times Y)$ можно задать $\mathcal{F} \rightarrow \mathcal{F}_{\mathcal{X}_0}(\mathcal{F}) = k_{\mathcal{X}_0}(\mathcal{F}) \otimes \mathcal{F}$,

Пусть \mathcal{A} и \mathcal{B} — оснащения для X, Y.

Тогда $\mathcal{A} \otimes \mathcal{B}$ — оснащение для $X \times Y$.

Тогда $D(\mathcal{A} \otimes \mathcal{B}) \cong D(\mathcal{A} \otimes \mathcal{B})$

В основе этой теоремы лежит наличие модульной структуры на $D_{\text{cat}}[\text{per}]$ и ее трансляция в различная техника, позволяющая описать многие вещи.

Соответствие.

1. Соответствие, если $\forall a_1, a_2. \text{Hom}_{\mathcal{X}}(a_1, a_2) \in D(\mathcal{A} \otimes \mathcal{B})$, т.е. этот квазирекресс имеет конечное число аналогий, и они все конгломерируются.

2. Пусть \mathcal{A} — оснащение.

Тогда $\mathcal{A} \times \mathcal{A}$ — оснащение.

3. Пусть \mathcal{A} — оснащение.

Тогда $\mathcal{A} \times \mathcal{A}$ — оснащение.

4. $H^i(\text{Hom}^\mathcal{A}_\mathcal{X}(a_1, a_2)) = \text{Hom}^\mathcal{A}(a_1, a_2[i]) = \text{Hom}^\mathcal{A}(a_1, a_2[i])$

5. $H^0(\text{Hom}^\mathcal{A}_\mathcal{X}(a_1, a_2[i]))$

Ноем найти конечное покрытие $X = \bigcup_{\alpha} U_\alpha$, где на U_α

$a_1 = \{0 \rightarrow F_{m-1} \rightarrow \ldots \rightarrow F_1 \rightarrow 0\}$

$a_2 = \{0 \rightarrow G_{m-1} \rightarrow \ldots \rightarrow G_1 \rightarrow 0\}$
Можно m, n, p, q задать двумерные для всех X.
Кроме того, $a^V = \{ F_n \to \cdots \to F_1 \}^{-n}$.
Тогда
\[
\text{Ext}^{i+j}(a_1, a_2) = H^{i+j}(X, a_1, a_2) \subseteq H^j(X, \mathcal{H}^{i}(a_1, a_2))
\]
Эти Ext конечномерны, $i+j \leq [p+q \cdot dim X]$.
Нет конечное число.
Раз так в спектралке, то так и в так, к нашему аналитики.
В другую сторону погружение.
Пусть X не симметрична. Симметрично, идея такая:
$X \supset X_x$, $x_0 \in X_x$; путь $C = X - x_0$ кривая,
$C = C \cap X$, C_{x_0}; C - гладкая кривая,
$\text{Hom}(\mathcal{O}_x, \mathcal{O}_C) = H^0(C, \mathcal{O}_C)$
$\dim H^0(C, \mathcal{O}_C) = \infty$

Проблема: \mathcal{O}_C не обозначенные лекций в $D^{perf}(X)$.
Для разные способыifting с проблемой.
Пусть на X достаточно много локально свободных пучков.
Построим локально свободную разрешению:
\[
\cdots \to P_2 \to P_1 \to P_0 \to \mathcal{O}_C \to 0
\]
В общем случае, она бесконечна. Делаем \mathcal{O}_C.
(есть, где это далеко отрезком груды.
(есть треугольник: $\mathcal{H}^{\geq N} \to \mathcal{O}_C$.

$\text{Hom}^{i,j}(\mathcal{O}_x, \mathcal{O}_C) =$
$= H^{i+j}(\mathcal{O}_x, \mathcal{O}_C) \subseteq H^j(X, \mathcal{H}^{i}(\mathcal{O}_x, \mathcal{O}_C))$
$\text{если } N \geq \dim X, \text{ то } H^0(X, \mathcal{O}_x) = \{ \mathcal{O}_x, i = 0 \}$
в спектралке ни с тем не сокращая, так что выживает в пределе, так что
им трудна бесконечномерная Homo между совершенными обьектами.
Ост и другие способы борьбы с этой проблемой.

Вывод в так, что сотовочных DG-категорий — это
привильное свойство.

Если DG-категории не над полем, а над колом, то
определение асценду, а свойства становятся намного меньше
факторными.

\textbf{Лемма.} Пусть \(X \) — гладкая. Тогда \(\mathcal{O}_X \) гладкая.

\begin{align*}
\text{До.} \quad & \text{Предположим, что на } X \text{ достаточно много локально свободных пучков. (Отсюда на } X \times X \text{ тоже)} \\
& \exists \text{ диагональный билатеральный.} \\
& \text{Гомотопическое прямое вложение:} \\
& \mathcal{O}_1 \otimes \mathcal{O}_2 \to \mathcal{O} \to 0
\end{align*}

\begin{align*}
& \text{построить}
\end{align*}

\begin{align*}
& \mathbf{D}(X \times X) \to \mathbf{D}(\mathbb{A} \times \mathbb{A}) \\
& \text{Hom}(\mathcal{O}, \mathcal{O}_X) = \mathbf{D}(\mathcal{O} \otimes \mathcal{O}_X) \\
& \text{объекты } \mathcal{O}' \otimes \mathcal{O} \text{ соответствуют представимым билатеральным}
\end{align*}
Максимес діаграма, $\Delta_*(\mathcal{O}_X)$ означає, ніж сформування отримання.

Виді ріки навчально витянули, що $\Delta_*(\mathcal{O}_X)$ суперечить X.

\[\text{Hom} \left(\mathcal{E}_V \otimes \mathcal{E}_e, \Delta_*(\mathcal{O}_X) \right) = \text{Hom} \left(\Delta_*(\mathcal{E}_V \otimes \mathcal{E}_e), \mathcal{O}_X \right) = \text{Hom} \left(\Delta_! \mathcal{E}_V \otimes \Delta_! \mathcal{E}_e, \mathcal{O}_X \right) = \text{Hom} \left(\mathcal{E}_V \otimes \mathcal{E}_e, \mathcal{O}_X \right) - \text{Hom} \left(\mathcal{E}_V, \mathcal{E}_e \right) \]

Пусть, тепер X не гладкі.

Приклад к рішовременно утверджде, що $\mathfrak{a} \in \text{RF} \left(\mathcal{A} \otimes \mathcal{A} \right)$

\[\mathfrak{a} \otimes \mathfrak{a} \in \langle h_0, \phi \mathfrak{a} \rangle \]

\[\Delta_*(\mathcal{O}_X) \otimes \mathfrak{a} \in \langle \mathcal{E}_V \otimes \mathcal{E}_e \rangle \]

(і) $\forall \mathcal{F} \in \mathcal{A} \left(X \right)$ $\exists m, \eta$:

\[\mathcal{F} = \{ \mathcal{F}_m \to \ldots \to \mathcal{F}_n \}, \text{ де все } \mathcal{F}_i
\]

ложнаюся свободне. Базис-множна бесконечної різнов.

$K \in D \left(\mathcal{A} \times \mathcal{A} \right)$; $P_\mathcal{A} : D(\mathcal{X}) \to D(\mathcal{X})$

\[P_{\mathcal{E}_V \otimes \mathcal{E}_e} (\mathcal{F}) = P_{\mathcal{E}_V} \left(L \mathcal{F}_1 (\mathcal{F}) \otimes (\mathcal{E}_V \otimes \mathcal{E}_e) \right) = \]

\[\quad = P_{\mathcal{E}_V} \left(P_1 \left(\mathcal{F} \otimes \mathcal{E}_V \right) \otimes \mathcal{E}_e \right) = \]

\[\quad = P_{\mathcal{E}_V} \left(P_1 \left(\mathcal{F} \otimes \mathcal{E}_V \right) \otimes \mathcal{E}_e \right) = \]

\[\quad = P_1 \left(\mathcal{F} \otimes \mathcal{E}_V \right) \otimes \mathcal{E}_e = \]

\[\quad = P_1 \left(\mathcal{F} \otimes \mathcal{E}_V \right) \otimes \mathcal{E}_e = \]

\[= \mathcal{H} \left(\mathcal{X}, \mathcal{F} \otimes \mathcal{E}_V \right) \otimes \mathcal{E}_e \]

"Очи оглієтка налічуються из" ограничениного числа \mathcal{E}_V.

Кожному, що опинило оглієтка такого виду.

Приклад виходить, що $P_{\mathcal{E}_V} (\mathcal{F}) = \phi$.

Для кожного \mathfrak{a} та всередині можна фіксувати m і n.\]
\[H^i(X, \mathcal{F}) = \frac{\ker \delta^i}{\text{Im} \delta^{i+1}} \]

Доказ. Пусть \(\mathcal{F} \in \text{Cone} X \to X \to X/\Delta X \to X \) — слоеяющее по троеме. Тогда неотчетливым

\[H^i(X, \mathcal{F}) = \mathcal{F} \to \mathcal{F}/\Delta \mathcal{F} \to \mathcal{F}/\Delta \mathcal{F}/(\mathcal{F}/\Delta \mathcal{F}) \]

\[x \mapsto [\delta_x] \mapsto [\delta_x/\Delta \delta_x] \mapsto [\delta_x/\Delta \delta_x/\Delta^2 \delta_x] \]

Если \(x \) циклична, то \(\delta_x = 0 \).

Думай, увидевший, соединитесь с накопто, а накопто — в достаточном, а достаточного, но отсутствующем.
Теорема (Хощинлод-Костин-Рындерс)

\[H_n(A_x) = \bigoplus_{p} H^{p+q}(X, \Omega^p_x) \]

Суммируя по диагоналям, мы приходим к категориальному смыслу.

\[H_0 \quad \text{- \嗬
о отдельном } H^0 - \text{ нет.} \]

Вопрос. Существуют ли \(X, Y : D(X) = D(Y) \), но \(H^0(Y) \neq H^0(X) \).

Пример пока нет.

Докажем, что для \(\dim \leq 3 \) из эквивалентности производных категорий следует равенство \(H^0 \).

Поверхности из симметрии.

Из индуктивного нейллена одним из инфратрианых нейллена.

Пускай \(\Gamma = \langle \tau_i, i, \tau_n \rangle \) - полуграфикальное разложение связанных триангулированных категорий. Тогда

\[H_n(\Gamma) = H_n(\tau_i) \oplus H_n(\tau_n) \]

Это разложение жёстко и функционально.

Допустим, \(D(X) = \langle D(\tau_i), i, D(\tau_n) \rangle \)

При этом дополнительная триангуляция примет.

Скорее всего, вторая триангуляция не имеет категориального смысла.
Когомологии Хочинейда:

\[HH^i(A) = \text{Ext}^i(A, A). \]

Теорема (Хочинейда - Костом - Розенфельд):

\[HH^n(A_X) = \bigoplus H^q(X, \Lambda^p T_X) \]

В терминах НЧ формируются деформации. Деформации многообразие \(X \rightarrow H^0(T_X) \otimes H^{-1}(T_X) \otimes H^{-2}(T_X) \)

Многообразие \(X \) — НЧ (Тх) с НЧ \(H^{-2}(X) \). \(H^0(T_X) \) — некоммутативные деформации структурного пучка. \(H^2(X) \) также имеет не один геометрический смысл.

НЧ не градуируется от \(\langle ; , . . . ; \rangle \), но насколько градуируемы.

Размерность можно восстанавливать с помощью \(\text{Hom}(F, S^r G) \);

функтор Серра точно есть. Например, в геометрическом случае.